A Fully Desynchronized Round-Robin Matching Scheduler
for a VOQ Packet Switch Architecture

Ying Jiang and Mounir Hamdi
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
Email: hamdi @cs.ust.hk

Abstract- Virtual Output Queuing (VOQ) is a practical and
high-performance packet switch architecture. There are many
simple iterative arbitration algorithms proposed for the VOQ
architecture. We investigate in this paper the performance of
various such algorithms and based on the analysis of pointer
desynchronization effect, we propose a group of new arbitration
algorithms, called SRR (static round robin matching) which
perform pretty well under various traffic models and are easy to
implement in hardware.

I. INTRODUCTION

The traditional output queued (OQ) switch architecture is
appreciated for its optimal performance, and is frequently
used as a yardstick by which the performances of newly
proposed switch architectures are measured. OQ switches can
always achieve 100% throughput since up to N packets can
be transferred to a single output port in a time slot for an N x
N switch. However, the high internal speed up required, N,
makes it impractical to build these switches for a large
number of ports and/or for high line rates. In contrast, input
queued (IQ) switches are designed to operate with a
switching fabric running at an internal rate equal to the
external link speed. Unfortunately, when using a first-in-first-
out (FIFO) queuing discipline at the input queues, due to the
head-of-the-line (HoL) blocking problem, they only provide a
maximum throughput of 58.6% [1] under uniform traffic and
much lower than that for other traffic models.

An architecture called virtual output queuing (VOQ) [2] is
proposed to solve the HoL problem while achieving the
scalability of IQ switches. Rather than maintaining a single
FIFO queue for all cells, each input maintains a separate
queue for the cells directed to different outputs. In this
architecture, the switch performance essentially depends on
its scheduling algorithm, that is, the arbitration between the
input ports and the output ports. A good algorithm should
achieve high performance, work with very high line rates
and/or large number of input/output ports, and be simple to
implement in hardware.

Many scheduling algorithms have appeared in literature.
They can be classified into two types: approximating
maximum size matching (MSM) and approximating
maximum weight matching (MWM). Although the MWM
algorithms have been proved to achieve 100% throughput
under any traffic [3][4], they are too complex to be
implemented and have a time complexity of O(N’logN). We
instead concentrate in this paper on a group of more practical
iterative algorithms, including RRM [5], iSlip [5], FIRM [7],

0-7803-6711-1/01/$10.00 (C) 2001 IEEE

etc, and evaluate their performances. Pointer
desynchronization plays a very important role in these
algorithms. Trying to get the best effect of desynchronization,
we propose a set of Static Round-Robin (SRR) algorithms,
which perform pretty well under various traffic models.

The rest of the paper is organized as follows: Section II
introduces some background knowledge of iterative
algorithms that approximate MSM. Section III gives the
formal specifications of our algorithms. The simulation
results are shown in Section IV. Section V gives a possible
hardware design. Finally, Section VI concludes the paper.

II. BACKGROUND KNOWLEDGE
A. Maximum Size Matching

The scheduling problem in an N x N switch is modeled
using a bipartite graph (See Fig. 1), where each part contains
N nodes, and one part corresponds to the input ports, while
the second part to the output ports. The requests from the
input queues to the corresponding output ports are
represented as edges, creating a bipartite graph.

The maximum size matching (MSM) for a bipartite graph
can be found by solving an equivalent network flow problem
[10] and the algorithm is called maxszze here. The most
efficient algorithm converges in O(N) time [9]. Although it
is guaranteed to find a maximum match, it is too complex to
implement in hardware and takes a long time to converge.
Instead, simple iterative algorithms are often used to
approximate MSM.

Inputs Outputs

Fig. 1. Bipartite Graph

407

B. Simple Iterative Algorithms: RRM, iSlip &FIRM

There exists a group of algorithms that are easy to
implement in hardware. They only take into consideration
whether each VOQ 1is occupied or not, to make the
scheduling decision and try to approximate MSM. The
calculation of the matching is performed in an iterative
fashion, where each iteration augments the matching
calculated in the previous iteration. In each of the following
iterations, only the unmatched inputs and outputs are
considered. We will introduce three of these algorithms:
RRM, iSlip and FIRM.

RRM (Basic Round-Robin Matching) [5] is the algorithm
from which the well-known iSlip was developed. However,
its performance is not good. The highest throughput under
uniform traffic is no more than 65%. RRM works in the
following way:

Step 1. Request. Each input sends a request to every output
for which it has a queued cell.

Step 2. Grant. If an output receives any requests, it chooses
the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. The output notifies
each input whether or not its request was granted. The pointer
to the highest priority element of the round-robin schedule is
incremented (modulo N) to one location beyond the granted
input. If no request is received, the pointer stays unchanged.

Step 3. Accept. If an input receives a grant, it accepts the
one that appears next in a fixed round-robin schedule starting
from the highest priority element. The pointer to the highest
priority element of the round-robin schedule is incremented
(modulo N) to one location beyond the accepted one. If no
grant is received, the pointer stays unchanged.

iSlip was first described in [S]. The main characteristic of
iSlip is its simplicity: it is readily implemented in hardware
and can operate at high speed. The performance is also good.
For uniform i.i.d. Bernoulli arrivals, iSlip is stable for any
admissible load. It means that 100% throughput can be
achieved. iSlip works in a similar way to RRM, with a small
but important difference: in step 2 mentioned above, the
pointer to the highest priority element only gets updated if
and only if the grant is accepted by the input.

FIRM (Fcfs In Round Robin Matching) was proposed in
[7]. The algorithm is almost the same as RRM and iSlip. We
list in Table I, the difference among RRM, iSlip and FIRM in
updating their pointers, which is the key difference among
them. The updating scheme plays an important role in
improving the performance. In [7], it is claimed that FIRM
provides improvement over iSlip in average delay which
reaches approximately 50% at loads above 95%.

C. Pointer Desynchronization

We can see that the difference of the 3 algorithms is only in
updating their pointers, but they can have a huge difference in
performance. We will explain below what really makes the
difference is their abilities of desynchronizing their pointers.

We know that if several outputs grant the same input, no
matter how this input chooses, only one match can be made,
and the other outputs will be idle. To get as many matches as

408

TABLE I
POINTER UPDATING SCHEMES OF RRM, ISLIP & FIRM

RRM iSlip FIRM

- No grant unchanged
=
=
= Granted one location beyond the accepted one

recl;{l(; st unchanged
E achreE;)I:; d one location beyond the granted one
5 one location

(,j:zgt ; %t beyond the unchanged the gl z;nted
P granted one

possible, it's better that each output grants a different input.
Since each output will select the highest priority input if a
request is received for it, it's better to keep the output
pointers desynchronized. Fig. 2 shows the average number
of synchronized output pointers under uniform traffic using
iSlip, FIRM and RRM. We can see that when the load
increases, the average number of synchronized pointers of
iSlip decreases to be near 0, which means full
desynchronization. While for RRM, this number changes
little under light load and increases a lot under high load.
For FIRM, it has an even better desynchronization effect
than iSlip.

It's not difficult to understand why RRM doesn't
desynchronize pointers. If the initial values of the pointers
are the same, and under heavy load, most pointers will
advance synchronously, leading to many synchronized
pointers. To understand why FIRM performs better than
iSlip in terms of pointer desynchronization under heavy
uniform traffic, the fact is that once any of the VOQ
corresponding to a highest priority pointer is empty, iSlip
will lose desynchronization, while FIRM still maintains it.

32x32 switch under uniform traffic

35

e—o RRM
4— islip
+—+ FIRM

@
o
T

- -) N
o o y o
T T T

o

Awvg number of synchronized output schedulers

0.5 0.6 0.7 0.8 0.9 1
Normalized load

0f2 0:3 0.‘4
Fig. 2. Synchronization of output arbiters for the three
algorithms for i.i.d Bernoulli arrivals with destinations

uniformly distributed over all outputs

III. THE STATIC ROUND-ROBIN ALGORITHMS

In this section, we propose a group of new algorithms: Static
Round-Robin (SRR) Matching. They are based on the idea of
keeping full pointer-desynchronization.

From section 2.C we know that keeping pointers
desynchronized is important. In fact, the best desynchronization is
achieved if it is made artificially. That is, the pointers at the output
side are set to be totally different at the beginning and advance
synchronously at each time slot thereafter. A possible
configuration for a 4 x 4 switch is shown in Table II.

This algorithm is called Single Static Round-Robin (SSRR). If
we also consider the input side and force the input pointers to
desynchronize, we will have Double Static Round-Robin (DSRR).

A. Specifications of SSRR & DSRR
The specification of SSRR is as follows:

Initialization. The input pointers are set to 0's. The cutput
pointers are set to some initial pattern such that there is no
duplication among the pointers.

The 3 steps of one iteration are:

Step 1. Request. Each input sends a request to every output
for which it has a queued cell.

Step 2. Grant. If an output receives any requests, it chooses
the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. The output notifies
each input whether or not its request was granted. The pointer
to the highest priority element of the round-robin schedule is
always incremented by one (modulo N) whether there is a
grant or not.

Step 3. Accept. If an input receives a grant, it accepts the
one that appears next in a fixed round-robin schedule starting
from the highest priority element. The pointer to the highest
priority element of the round-robin schedule is incremented
(modulo N) to one location beyond the accepted one.

For DSRR, in the initialization part, the input pointers will
be set to the same pattern as the outputs. Step 3 is changed to:

Step 3. Accept. If an input receives a grant, it accepts the
one that appears next in a fixed round-robin schedule starting
from the highest priority element. The pointer to the highest
priority element of the round-robin schedule is always
incremented by one (modulo N) whether there is an accept or
not.

TABLE II
POINTER CONFIGURATION FOR SRR
Output 1 Output2 | Output3 | Output4
Pointers at 4i" time 4 3 2 1
slot

Pointers at (4i+1)"

time slot 1 4 3 2
Pointers at (4i+2)"

time slot 2 1 4 3
Pointers at (4i+3)"

time slot 3 2 1 4

B. The Rotating Pointer Scheme

There is a disadvantage of the algorithms described above:
the inputs may be treated unfairly. To explain that, let’s take
a look at the unbalanced traffic model. The traffic model is as
follows (for a 4x4 switch):

0
X
X

® o o =
o o ®r ®
% % o o

0

The traffic is concentrated on two "diagonals". Consider
output 1: no matter whether the highest priority input is 2, 3
or 4, it always gives the priority to input 4, while input 1 only
gets the chance when the highest priority input is 1, or input 4
doesn’t have any queued cell for output 1. So, under heavy
load, input 1 and input 4 are treated very differently. To solve
this problem, a scheme called "rotating pointers" is used as an
enhancement of DSRR. In the step 2 of DSRR mentioned
above, an output always searches from the highest priority
one and increments by one each time (modulo N) until there
is a request found. In particular, this is a clockwise rotation.
Similarly, we can also have a counter-clockwise rotation, by
searching in the other direction. If we use clockwise and
counter-clockwise rotation alternatively, each for one time
slot, we give each input the same chance to be served. For the
input side, to get better performance, we always search in the
counter-clockwise direction. We call this improved algorithm
RDSRR (rotating DSRR).

IV. SIMULATION RESULTS

The simulation results are gathered from a 32x32 switch. Delay
is only the period of time a cell spends waiting in a VOQ before
being transmitted. Each point in the figures runs for 500,000 time
slots, and the statistics are gathered from the 50,000" time slot.
Average delay is calculated from all the cells outputted during this
period of time. Relative average delay is the average delay divided
by the average delay of an output-queued switch of the same size.
By normalized load, we mean the percentage of time slots that
have cells coming in, averaged over all inputs.

We evaluate the different algorithms under four traffic models:
uniform, bursty, hotspot and unbalanced. For uniform traffic, the
packets are Bernoulli arrivals, i.i.d., with destinations uniformly
distributed over all outputs. For bursty traffic, busy and idle
periods appear alternatively; in a busy period, there is a cell
arriving in each time slot; in an idle period, there is no cell arriving
in any time slot. The average loads for the inputs are the same, and
the destinations are uniformly distributed burst by burst over all
outputs. The traffic matrix of hotspot traffic is like (for a 4x4
switch):

2x
2x
2x
2x

X
X
X

®oOx % =
® o= R R

X

if output 1 is the "hotspot" and each flow is Bernoulli. It
means that the "hotspot" has twice as much load as the other
outputs. We’ve already introduced the unbalanced traffic in
Section III.B.

409

32x32 switch under uniform traffic
70

60| o——o iSlip
4—< FIRM
#—% SSRR

50l +—+ DSRR
B—f RDSRR

»
o

Relative average delay
W
o

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized load

Fig. 3. Graph of average delay as a function of normalized
load for a 32x32 switch under uniform traffic

In our simulation, we only consider admissible traffic,
which means that no input or output is overloaded. The
following figures show the results of one iteration.

Fig. 3 shows the results under uniform traffic. We can see
that FIRM is better than iSlip under high load (over 0.7).
SSRR, DSRR and RDSRR are all much better than FIRM
and iSlip, especially when 0.5<load<0.95, and RDSRR has
the best performance.

Fig. 4 shows the results under bursty traffic. The case is
similar to the uniform case. But there is not much difference
between iSlip and FIRM, and also between SSRR, DSRR and
RDSRR.

Fig. 5 shows the results under hotspot traffic. iSlip and
FIRM show similar performance. SSRR is a slightly worse
than both them in a small range of load: 0.36-0.43, while
DSRR and RDSRR are much better than the others.

32x32 switch under uniform bursty traffic

20}

Relative average delay

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized load

Fig. 4. Graph of average delay as a function of normalized
load for a 32x32 switch under bursty traffic

. 32x32 switch under hotspot traffic
10 T T T T T T T

Relative average delay
-
o

0.05 0.1 0.15 0.2 0.25 03 035 04 045 05 0.55
Normalized load

Fig. 5. Graph of average delay as a function of normalized
load for a 32x32 switch hotspot traffic

The reason why DSRR and RDSRR perform so well is that
by keeping the input pointers desynchronized, the "hotspot”,
output 1 always gets a chance to be served in each time slot.

Fig. 6 shows the results under unbalanced traffic. We can
see that SSRR and DSRR don't perform well under this
traffic model, while after using the rotating pointer scheme,
the performance is much better than iSlip and FIRM.

V. IMPLEMENTATION OF SRR SCHEMES

The implementation of SRR is really simple. The
algorithms are almost the same as iSlip or FIRM, so we can
directly use the architecture of iSlip (Fig. 7). A scheduling
chip contains 2N arbiters: N grant arbiters to arbitrate on
behalf of the outputs, and N accept arbiters to arbitrate on
behalf of the inputs. The grant arbiters get the request
information from the input queues and make arbitration.
Then, the arbitration result is sent to the accept arbiters. After

32x32 switch under unbalanced traffic

Relative average delay

Normalized load

Fig. 6. Graph of average delay as a function of normalized
load for a 32x32 switch unbalanced traffic

410

the input arbitration is made by the accept arbiters, the final
result is put into a decision register. For pointer updating, it is
even simpler than iSlip and FIRM, because the pointers are
always incremented by 1, no matter what grant/accept is sent
or whether the grant is accepted or not. So the updating of
output pointers (which is done in the grant arbiters) will not
depend on the accept signals generated by the accept arbiters.
It makes the design of grant arbiters really simple.

To add the rotating enhancement function, we take the
current time as a control of the rotating direction of both
grant and request arbiters. It adds only a little complexity to
the design.

VI. CONCLUSIONS

In this paper, a group of practical scheduling algorithms for
VOQ switch architecture - Static Round-Robin (SRR)
matching is introduced. It has three versions: single-SRR
(SSRR), double-SRR (DSRR) and rotating DSRR (RDSRR).
SSRR and DSRR achieve much better performance than the
other algorithms, iSlip and FIRM, that we have considered
under various traffic models, with even simpler hardware
implementation. With an enhancement of "rotating pointers"”,
RDSRR improves upon SSRR and DSRR. It solves the
unfairness problem and guarantees better performance under
any traffic pattern.

Rotating Rotating

direction direction
I' 1
" 1 ' 1
Q
g 8
5?5 :.; 1 B
35 &
E2 b ' — =
Yt \Z/ 1 1 B
8 ! ! a
-
1 N 1 1 N 1
1 . 1 - - L] > L}
Grant Request
Arbiters Arbiters

Fig. 7. Implementation of SRR Schemes

REFERENCES

[1] M.J. Karol, M. G. Hluchyj, and S.P. Morgan, “Input
Versus Output Queuing on a Space-Division Packet
Switch,” IEEE Transactions on Communications,
35:1347-56, 1987.

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High
Speed Switch Scheduling for Local Area Networks,”
ACM Trans. Comput. Syst., pp. 319-52, Nov. 1993.

[3]1 N. Mckeown, A. Mekkittikul, V. Anantharam, and J.
Walrand, “Achieving 100% Throughput in an Input-
Queued Switch,” IEEE Transactions on
Communications, 47: 1260-67, Aug. 1999.

[4] A. Mekkittikul, and N. Mckeown, “A Practical
Scheduling Algorithm to Achieve 100% Throughput in
Input-Queued Switches,” [EEE INFOCOM 98, San
Francisco, April 1998.

[5]1 N. McKeown, “Scheduling Cells in an Input-Queued
Switch,” PhD thesis, University of California at
Berkeley, May 1995.

[6] H. J. Chao, and J.-S. Park, “Centralized Contention
Resolution Schemes for A Large-Capacity Optical ATM
Switch,” Proc. IEEE ATM Workshop, Fairfax, VA, May
1998.

[71 D. N. Serpanos, and P. I. Antoniadis, “FIRM: A Class of
Distributed Scheduling Algorithms for High-speed ATM
Switches with Multiple Input Queues,” IEEE INFOCOM
2000.

[8] R. E. Tarjan, “Data Structures and Network Algorithms,”
Society for Industrial and Applied Mathematics,
Pennsylvania, Nov. 1983.

[9] J. E. Hopcroft, R. M. Karp, “An n”* Algorithm for
Maximum Matching in Bipartite Graphs,” Society for
Industrial and Applied Mathematics Journal of
Computation, vol.2 pp.225-31, 1973.

[10] N. McKeown, M. Izzard, A. Mekkittikul, and M.
Horowitz, “The Tiny Tera: A Small High-Bandwidth
Packet Switch Core,” IEEE Micro Magazine, vol.17, No.
1, pp. 26-33, Jan-Feb, 1997.

411

